Package: customizedTraining 1.2

customizedTraining: Customized Training for Lasso and Elastic-Net Regularized Generalized Linear Models

Customized training is a simple technique for transductive learning, when the test covariates are known at the time of training. The method identifies a subset of the training set to serve as the training set for each of a few identified subsets in the training set. This package implements customized training for the glmnet() and cv.glmnet() functions.

Authors:Scott Powers, Trevor Hastie, Robert Tibshirani

customizedTraining_1.2.tar.gz
customizedTraining_1.2.zip(r-4.5)customizedTraining_1.2.zip(r-4.4)customizedTraining_1.2.zip(r-4.3)
customizedTraining_1.2.tgz(r-4.4-any)customizedTraining_1.2.tgz(r-4.3-any)
customizedTraining_1.2.tar.gz(r-4.5-noble)customizedTraining_1.2.tar.gz(r-4.4-noble)
customizedTraining_1.2.tgz(r-4.4-emscripten)customizedTraining_1.2.tgz(r-4.3-emscripten)
customizedTraining.pdf |customizedTraining.html
customizedTraining/json (API)

# Install 'customizedTraining' in R:
install.packages('customizedTraining', repos = c('https://saberpowers.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/saberpowers/customizedtraining/issues

Datasets:
  • Vowel - Vowel Recognition

On CRAN:

2.70 score 1 stars 10 scripts 147 downloads 12 exports 11 dependencies

Last updated 6 years agofrom:8feae96962. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:customizedGlmnetcv.customizedGlmnetnonzerononzero.customizedGlmnetnonzero.singletonplot.customizedGlmnetplot.cv.customizedGlmnetpredict.customizedGlmnetpredict.cv.customizedGlmnetpredict.singletonprint.customizedGlmnetprint.cv.customizedGlmnet

Dependencies:codetoolsFNNforeachglmnetiteratorslatticeMatrixRcppRcppEigenshapesurvival